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Abstract. InterpreterLib is a Haskell library for building and compos-
ing modular syntactic and semantic definitions. We identify two forms
of composition within this domain. Composition along syntax combines
semantics for denoting differing term spaces to a common denotational
domain. Composition along semantics combines semantics for denoting
a common term space to differing domains. We demonstrate these com-
position mechanisms by applying InterpreterLib to examples and then
relate our experiences with InterpreterLib implementing tools for the
Rosetta language.

1 Introduction

A denotational semantics maps terms in a term space to a denotational domain,
but traditional composition of denotations is prohibited by mismatches in ei-
ther the term space or the domain. Accordingly, we identify two separate kinds
of composition that address this problem: composition along syntax composes
semantics denoting differing term spaces to a common denotational domain.
Composition along semantics composes semantics for denoting a common term
space to differing domains. InterpreterLib defines composition mechanisms for
both. While the library was developed as a tool for denotational semantics, it
supports definition and composition of all analyses over inductive datatypes.

InterpreterLib implements two existing techniques for composition along syn-
tax. Liang et al. [13] demonstrated monad transformers as a solution to the lack
of modularity in semantic domains. Gayo et al. [4] then introduced an extensible
syntax solution derived from the initial algebra semantics of inductive datatypes.
As a result, the library enables the definition of syntactic and semantic compo-
nents and their re-use.

Both techniques derive modularity from qualified types [6, 26], as imple-
mented in Haskell [15]. In modular monadic semantics, type classes serve as the
modular interface to monadic operators. Semantic definitions remain modular so
long as the monadic type remains qualified, admitting composition by collecting
type constraints over the monadic interface classes. Once the developer deter-
mines a concrete monad by composing suitable monad transformers, the library
of type class instances relating the monad transformers and monadic interfaces



automatically derives the executable implementation of the monadic operators
at the cost of further modularity.

Gayo et al. [4] use a type class to overload the constructors and destructors
of the concrete term space, requiring only that particular syntactic constructs
be embedded in that term space. Again, syntactic definitions can be composed
so long as the term space type remains qualified. The developer specifies a con-
crete term space using a composition operator for syntactic constructs and an
associated set of type class instances derives the implementation of the syntactic
modularity interface at the cost of further modularity. Section 3.1 includes a
concrete example.

InterpreterLib also implements algebra combinators [27, 28] for composition
along semantics. Algebra combinators build composite semantics from compo-
nent semantics over a common term space. In the library, semantics are specified
by algebras, which are functions of a particular shape. The modularity is derived
not from qualified types, but from an algebra’s implicit recursion. Since an al-
gebra is not directly recursive, it admits more manipulation.

2 Basic Semantics

We demonstrate composition via InterpreterLib and present the library’s def-
initions with a running example. We first develop two distinct syntaxes (an
integer language and a Boolean language) and a common analysis (evaluation).
We compose the syntax and semantics along syntax to construct an interpreter
for a combined language over integers and Booleans. Next, we demonstrate the
usefulness of composition along semantics by adding a syntactic construct for
overloaded operators and defining its evaluation semantics in terms of a type-
checking semantics using an algebra combinator.

We start by defining two separate evaluation semantics for language con-
structs over integers and Booleans. InterpreterLib represents syntactic constructs
with syntactic functors and semantics with semantic algebras. This is a conse-
quence of adopting the initial algebraic semantics for the term space. In Haskell,
functors are data types of kind * — * that are instances of the Functor class,
providing the operation fmap :: (a — b) — (f a — £ b).

2.1 Integers

We define the syntax and semantics of the integer language (fig. 1) with a syn-
tactic functor and a semantic algebra. Both definitions are standard except that
they are not directly recursive. The recursion will be introduced using a fixed-
point operator as the final step.

The Integers functor introduces the syntactic constructors for basic integer
arithmetic. Using the type argument t to represent recursively-defined subterms
rather than specifying that they specifically be Integers or any other specific
functor allows us to define the Integers functor as a single entity while still
allowing us to later construct syntax containing Integers and other functors.



-- Integers language --InterpreterLib definitions

data Integers t = data Fix f = In (f (Fix f))
Add t t | Sub t t | Num Int

$(derive makeAll ’’Integers) type Algebra f a =f a -> a

phi :: Algebra Integers Int cata ::

phi (Add x y) =x +y Functor f => Algebra f a

phi (Sub x y) =x -y -> Fix f -> a

phi (Num i) = i cata phi (In x) =

phi (fmap (cata phi) x)

Fig. 1. Syntax and semantics for the Integers language and some InterpreterLib
definitions

For example, an addition Add x y does not require x and y to necessarily be
Integers themselves—they may be function calls, record lookups, or any other
syntax that, if we define the usual evaluation semantics, we’d expect to represent
numerical quantities. In this way, we consider Integers to be one open compo-
nent of a BNF grammar that we later construct by combining all the functors
that fully define all alternatives of the grammar, as we shall see in section 3.1.

The type-level fixed point operator InterpreterLib.Fix calculates the type
of terms in the language generated by a syntactic functor’s analogous grammar.
Thus, the term 3 4 4 is represented as In (Add (In (Num 3)) (In (Num 4)))
:: Fix Integers.

The type synonym InterpreterLib.Algebra specifies the form of semantic
algebras. An f-algebra captures the semantics of the structure of a functor f
by specifing how to fold that structure into the algebra’s carrier a. The phi
algebra over Integers gives meaning to the structure of Integers by mapping
the constructors directly to arithmetic operations.

As defined, the semantic algebra phi can only be applied to a single layer of
Integers structure: phi (Add 3 4) reduces to 7. The catamorphic recursion op-
erator, InterpreterLib.cata, can extend an f-algebra to a function applicable
to terms in the language generated by the syntactic functor f.

With these definitions, phi denotes terms in Fix Integers to values.

*Integers> let denote = cata phi

*Integers> denote (In (Num 3))

3

*Integers> denote (In (Add (In (Num 3)) (In (Num 4))))
7

The Template Haskell [21] splice $(derive makeAll ’’Integers) invokes
the InterpreterLib code generators. The makeAll code generator derives as much
boilerplate as possible for a functor. The derived code supports other operators
provided by InterpreterLib for manipulating and composing functors and alge-
bras; some of these will be demonstrated later in this article.



2.2 Booleans

Next we define the syntax and semantics for Booleans in figure 2. The computa-
tional and polymorphic concerns regarding the conditional construct necessitate
a more intricate semantic algebra. The semantics of the conditional exposes both
that there may be other types of value in the value space besides Booleans and
that the computations of each branch may have side-effects. Thus, the semantics
must explicitly manage the qualified types for the monad and the value space.

data Booleans t = Tru | Fls | If t t t
$(derive makeAll ’’Booleans)

data VBool v = VBool Bool deriving (Show, Eq)

phi :: (Monad m, SubFunctor VBool v) => Algebra Booleans (m (Fix v))
phi Tru = return $ toS $ VBool True
phi Fls = return $ toS $ VBool False
phi (If mc mt mf) = do
v <- mc
case fromS v of
Nothing -> fail "if-guard was not Boolean"
Just (VBool b) -> if b then mt else mf

Fig. 2. Syntax and semantics for the Booleans language

The Booleans syntactic functor represents another group of alternatives from
a single-sorted BNF grammar. We describe the VBool functor below. The Tem-
plate Haskell splice is exactly the same as for Integers.

The Boolean semantics are complicated by two modularity concerns. First,
the conditional expression is traditionally non-strict in its alternatives. The eval-
uation of a branch must be guarded by the conditional. Even though Booleans
themselves introduce no side-effects, the semantics must explicitly manage the
monadic carrier in order to respect the side-effects of any language constructs it
may be composed with. Second, the algebra phi allows the branches to compute a
value other than a Boolean. The InterpreterLib.SubFunctor constraint (to be
discussed shortly) requires merely that the value space Fix v includes Booleans
instead of requiring that the value space be exactly Booleans. The value functor
VBool is solely defined to make this embedding precise.

The semantic algebra for Integers does not suffer these complications be-
cause arithmetic operations have no traditional interactions with side-effects and
do not involve other types. In fact, encapsulating side-effects in a monad and the
embedding of one value space in a larger one via SubFunctor allows the pure,
uniformly-typed Integers.phi to be promoted in a natural way into a richer
algebra carrying any monad and any value space that embeds Integers. This



promotion is a necessary step in the composition of the Boolean and Integer
semantics, which we demonstrate next.

3 Composing along Syntax

Finally, we compose the syntax, semantics and value spaces of the previously
defined sub-languages. The composition mechanism for syntactic functors cor-
responds closely with the modularity mechanism from the SubFunctor class.
The promotion of the Integers.phi algebra necessary for the composition with
Booleans.phi is carried out via two re-usable algebra operators, pureAlg and
embedAlg. This sort of operator motivates the foundation of InterpreterLib: first-
class syntax and semantics.

3.1 Syntactic Composition along Syntax

Syntactic functors are composed with the functor sum operator and the void
functor, InterpreterLib. :$: and InterpreterLib.FVoid respectively. £:$:g
is a syntactic functor with all the properties shared by £ and g, such as Functor
and Traversable.

The InterpreterLib.SubFunctor class relates one type with another that
embeds it. An embedding is witnessed by the two class methods injF and prjF.
This class is a modularity interface that directly corresponds to the composition
mechanism of :$:. InterpreterLib declares instances of SubFunctor for :$: and
FVoid such that SubFunctor f fs holds if fs is a right-nested sum functor ter-
minated by the void functor and f occurs as the left operand of one of the functor
sums. In other words, the derivation of the SubFunctor relation is automatic if
the type hosting the embedding is structured as a list of possible functors.

The composition and modularity mechanisms of the term space should be re-
used to achieve extensibility in the value space, as Booleans.phi demonstrates
above. This re-use comes as no surprise given the convention of defining the
value space as a sort in a BNF grammar.

We compose the syntactic functors Integers and Booleans as Integers
:$: Booleans :$: FVoid. While the ordering of the functors does induce a
particular type to which we must adhere when writing functions over the functor
sum, the ordering of the functors (other than FVoid at the end) is arbitrary. The
mechanism for projecting out of the sum is a matter of chasing labels, providing
an appropriate interface to extracting the value that is unaffected by the order
of functors within the sum.

3.2 Semantic Composition along Syntax

InterpreterLib defines a composition mechanism for semantic algebras that corre-
sponds to the functor sum syntactic mechanism. InterpreterLib. (@+@) (fig. 3)
applies its first algebra if the sum functor value is an L, and its second if it is an R.



infixr 5 :$: class SubFunctor f g where

data (f :$: g) a = injF :: f a -> g a
L({(a |R(ga prjF :: g a -> Maybe (f a)

unFSum (L x) = Left x

unFSum (R x) = Right x toS = inn . injF

fromS = prjF . out
data FVoid a

infixr 5 @+@
(@+@) :: Algebra f a -> Algebra g a -> Algebra (f :$: g) a
fAlg @+@ gAlg = either fAlg gAlg . unFSum

voidAlg :: Algebra FVoid a
voidAlg = undefined

Fig. 3. InterpreterLib modularity interface and mechanisms for composition along
syntax

The InterpreterLib.voidAlg algebra is necessarily and sufficiently undefined
as there is no way to construct an FVoid term.

The composition of Integers.phi and Booleans.phi cannot be directly
achieved with the algebra sum operator. Its type shows that the carriers of the
two algebras must be the same, which is not yet the case. As discussed above,
Integers.phi is unaware of monadic side-effects and values other integers, since
it is a simpler denotation. It must be promoted to handle the concerns before
being summed with Booleans.phi.

Algebras can be composed even if they do not all utilize monads for side-
effects or use precisely the same result type. Algebra carriers can be lifted from
pure to monadic forms via InterpreterLib.pureAlg, and from a concrete type
to a larger ‘host’ type via InterpreterLib.embedAlg (fig. 4). pureAlg con-
verts the pure carrier of an f-algebra to a monadic carrier if the functor is
an instance of the Traversable class, which provides the distributive operator
sequence :: Monad m => t (m a) -> m (t a). The makeAll code generator
derives instances of the Traversable class for syntactic functors that do not
include function spaces.

The embedAlg operator promotes the carrier from a concrete type to a host
type that embeds the concrete type, relying on the monad for handling projection
failures. The first two arguments identify which functor will be used to represent
the pure carrier in the embedding value space. The third argument specifies
which exception to raise in the monad on a projection failure.

Composing these two operators promotes the carrier of the Integers.phi
algebra so that it can unify with the carrier of Booleans.phi. The composite
algebra for the combined integers and Booleans language can now be defined.

With these definitions, composite_phi can be used to denote terms in the lan-
guage Fix (Integers :$: Booleans :$: FVoid) to monadic computations.
The Either String monad satisfies the monadic type constraints on the de-



pureAlg :: (Traversable f, Monad m) => Algebra f a -> Algebra f (m a)
pureAlg phi = 1iftM phi . Data.Traversable.sequence

embedAlg :: ( Functor f, MonadError e m, SubFunctor g v
) => (a -> g (Fix v)) -> (g (Fix v) -> a) -> e
-> Algebra f (m a) -> Algebra f (m (Fix v))
embedAlg ctor dtor exn phi =
1iftM (toS . ctor) . phi . fmap project
where project m = do
v <-m
case fromS v of
Nothing -> throwError exn
Just g -> return (dtor g)

Fig. 4. Some InterpreterLib Algebra promotion operators

noted computation, and the Fix (VNum :$: VBool :$: FVoid) value space
satisfies the SubFunctor constraints. These types must be ascribed because the
constraints accumulated via the SubFunctor and MonadError modularity mech-
anisms only restrict the types without determining a specific type. Semantics
defined with InterpreterLib derive their modularity from these type classes and
lose that modularity once concrete types have been specified. They remain ex-
tensible via the composition operators (functor and algebra sum operators) until
recursion is introduced with Fix and cata.

*Interpreter> let denote t = cata composite_phi t
*Interpreter> denote testl :: M V

Right (In (L (VNum 1)))

*Interpreter> denote test2 :: M V

Right (In (L (VNum 2)))

*Interpreter> denote test3 :: M V

Left "if-guard was not Boolean"

The test1, test2, test3 terms as defined in figure 5 below are defined using
“smart constructors.” Deriving with makeAll generates these definitions for any
functor. Each smart constructor wraps the base data constructor in calls to
the injection facilities of the SubFunctor class. They are named by prepending
“mk” to each constructor name. As a result of using smart constructors, these
test definitions specify terms in any language that includes both Integers and
Booleans.

3.3 Summary

To add new features to this language, we would: (1) write syntactic functors for
the new language constructors; (2) derive the boilerplate for those functors; (3)
write semantic algebras for the new functors; (4) extend the composite algebra



data VNum x = VNum Int deriving (Show, Eq)

philntegers :: ( MonadError e m, Error e
, SubFunctor VNum v
) => Algebra Integers (m (Fix v))
philntegers =
embedAlg VNum (\(VNum i) -> i) (strMsg "not an integer")
(pureAlg Integers.phi)

composite_phi ::

( MonadError e m, Error e

, SubFunctor VBool v, SubFunctor VNum v

) => Algebra (Integers :$: Booleans :$: FVoid) (m (Fix v))
composite_phi = philntegers @+Q@ Booleans.phi @+Q@ voidAlg

type M = Either String
type V = Fix (VNum :$: VBool :$: FVoid)

testl, test2, test3 ::

(SubFunctor Integers t, SubFunctor Booleans t) => Fix t
testl = mkIf mkTru (mkSub (mkNum 5) (mkNum 4)) (mkNum 1)
test2 = mkAdd (mkNum 1) (mkIf mkFls (mkNum 2) testl)
test3 = mkIf (mkNum O0) (mkNum 0) (mkNum O)

Fig. 5. Interpreter for the combined Integers :$: Booleans language

by summing it with the new algebras. This last step corresponds to extending
the composite syntactic functor by summing it with the new syntactic functors.

Notice that none of the original syntactic or semantic definitions require
changes (or even recompilation). We also did not have to write any boilerplate
code. Old terms defined using smart constructors do not require any changes be-
cause their type is only constrained by SubFunctor constraints. The results are
excellent — modularity is preserved in the term space, in the algebras, and in the
value space, and yet the tasks required for changing the language are straight-
forward, requiring change practically only where actual change is intended.

Compositionality is achieved via modularity interfaces and composition mech-
anisms. Semantic algebras abstract over the value space and computational
structures using the SubFunctor and monadic interface type classes. Unifica-
tion of these restricted type variables collects constraints instead of merging
concrete types. The InterpreterLib user uses these constraints to calculate a suit-
able concrete monad and value space once extensibility is no longer required. The
syntactic and semantic definitions themselves allow composition by relying on
recursion combinators in lieu of direct recursion. The non-recursive definitions
also admit manipulations, such as the carrier promotion achieved via pureAlg
and embedAlg. The user again only introduces recursion once extensibility is
no longer required. Because InterpreterLib defines instances of the modularity



interface type classes for each of the composition mechanisms, compositional-
ity comes nearly for free, most often requiring only the application of recursion
operators and type ascriptions.

4 Composition along Semantics

The composition mechanisms from the previous section, :$: and @+@, both
change the syntactic functor without affecting the carrier of the semantic al-
gebra, as can be observed directly from the types involved in each operator’s
Haskell signature. These compositon operators are used to combine semantic al-
gebras defining the same semantic analysis for disparate syntactic functors into
a composite algebra for the corresponding composite functor; it is composition
along syntax. InterpreterLib also provides composition mechanisms for algebras
over the same functor but with heterogenous carriers; this is composition along
semantics.

4.1 Sequencing Algebras

The principle InterpreterLib mechanism for composition along semantics is the
sequence algebra combinator, InterpreterLib.segMAlg (fig. 6). The implemen-
tation of the sequence algebra combinator is omitted for this discusion. Instead,
we will specify the semantics in two phases. First, we discuss a pure variation
of the combinator, seqAlg, with no specialized handling of monads. Second, we
motivate the support for monadic carriers.

The seqAlg combinator builds a composite algebra from an algebra and an
indexed algebra. The result of the first algebra at each node is made available to
the second algebra.

seqAlg :: Functor f => Algebra f a -> (a -> f a -> Algebra f b)
-> Algebra f (a, b)
seqAlg phi psi f_ab = (a, psi a f_a (fmap snd f_ab))
where f_a = fmap fst f_ab; a = phi f_a

Fig. 6. The pure sequence algebra combinator

4.2 Example: Checking for the AVL Property

We define an analysis that checks a binary tree for the AVL property. The
composition operator used in this example is the pure variation of seqMAlg
where the monad is assumed to be the trivial identity monad, since the semantics
require no side-effects. (The example in section 4.4 makes use of the monad.)
This emphasizes the composition semantics of the sequence algebra combinator
without involving the preservation of monadic encapsulation.



The AVL property requires that subtree heights differ by at most one. The
Node functor (fig. 7) is introduced as the branching functor for binary trees such
that the shape of a binary tree has type Fix Node. An analysis for checking this
property can be formulated as the composition of a Node-algebra for determining
tree height, heightPhi, and an indexed Node-algebra for requiring a property to
hold at all nodes, everywhere. The essence of the AVL property is checked by
the withinl predicate, which is applied to the results of the heightPhi algebra
at each node.

data Node x = Leaf | Branch x x everywhere :: Bool -> Algebra Node Bool
everywhere _ Leaf = True

heightPhi :: Algebra Node Int everywhere here (Branch 1 r) =

heightPhi Leaf = 0 1 && r && here

heightPhi (Branch 1 r) =

1 +max 1 r isAVL :: Fix Node -> Bool

isAVL = snd . cata phi

withinl :: Node Int -> Bool where phi = heightPhi ‘seqAlg‘

withinl Leaf = True (\h f_h —>

withinl (Branch 1 r) = everywhere (withinl f_h))

abs (1 - r) <=1

Fig. 7. An AVL check for Fix Node trees

The algebra phi that determines the isAVL catamorphic extension is defined
by composing the re-usable component algebras heightPhi and everywhere
with the sequence algebra combinator. Informally, the algebra combinator deco-
rates the tree with the results of the algebra and then applies the indexed algebra.
In this case, each node is decorated with the height of the subtree it roots, as
calculated by heightPhi. Then the everywhere indexed algebra is applied to
require that the withinl predicate holds at every node in the tree.

It is more accurate to identify the sequence combinator as a let construct
for algebras. The bindings are context-dependent in that they take various val-
ues as the eventual catamorphic traversal applies the resulting algebra to each
node within the regular data type. The concept of decoration misleadingly im-
plies that the traversal has already taken place, whereas the sequence algebra
combinator yields an algebra, not a catamorphic extension. The correspondence
between the decoration and the let construct interpretations of the combinator
is in accord with the duality between products and exponents found in curried
function semantics.

4.3 Sequencing Algebras with Monadic Carriers

The seqMAlg combinator is a specialization of seqAlg for the case where the
algebra has a monadic carrier (fig 8). Using seqAlg would name each monadic
computation for use within the index algebra. In contrast, seqMAlg names the



result of those monadic computations. The FunctorContext and FunctorZip
type classes are modularity interfaces for operations that seqMAlg performs on
the functor; instances are generated by the makeAll code generator.

seqMAlg :: ( FunctorContext f, FunctorZip f, MonadSequence a f b m
) => Algebra £ (m a) -> (a -> f a -> Algebra f b)
-> Algebra f (m (a, b))

class MonadSequence a f bm | m -> a f b

data SequenceT a £ bm = ...
runSequenceT :: SequenceT a f bm (a, b) ->m b

Fig. 8. The interface to the monadic sequence algebra combinator

The combinator crosses the monadic boundary without compromising the
monadic encapsulation: computations are not repeated or run out of order; in-
stead, the algebra combinator introduces a set of monadic interface constraints
on the monad and side-conditions on the algebra. The constraints are represented
by the InterpreterLib.MonadSequence class, and InterpreterLib provides a
corresponding monad transformer, InterpreterLib.SequenceT. The methods
of this type class are only used by the combinator, so the InterpreterLib user
need not see them. It is essentially a combination of the Reader and Writer mon-
ads. InterpreterLib also provides the necessary instances for lifting this interface
through other transformers and vice versa.

Informally, the side-condition requires that the algebra be a complete, static
analysis: at each node, it must bind each sub-computation exactly once. An alge-
bra for type-checking is an archetypal example of such an analysis. Formalizing
this condition is current research.

4.4 Example: Resolving Overloaded Operators

The semantics of overloaded operators can be resolved to specific operations once
the concrete type is known. We assume an algebra for type checking and compose
it with an indexed algebra for evaluation of overloaded operators (fig. 9).

This type-checking algebra uses monads to encapsulate the side-effect of rais-
ing an error. Type-checking algebras also commonly uses the monad to maintain
the typing environment for bound variables.

We can sequence an indexed evaluation algebra for overloaded operators af-
ter the type checking algebra, as in figure 10. Thus, the indexed algebra can
determine the resolution of the operator syntax from the type of the result.

We have defined an evaluation algebra for overloaded operators by composing
an independent specification of a type checking algebra with a specification of a
Ty-indexed evaluation algebra for operators using the seqMAlg combinator. This
example motivates the use of seqMAlg to index across the monadic boundary.



data Ty = TInt | TBool

phi :: (MonadError e m, Error e) =>
Algebra (Operators :$: Integers :$: Booleans :$: FVoid) (m Ty)

Fig. 9. Interface to an assumed type checker for the language with overload operators

5 Applications

In this section, we provide examples of some uses of InterpreterLib beyond toy
examples. We show that InterpreterLib is a valid basis of a language description
and semantic implementation.

5.1 Rosetta Type Checker

Rosetta is a systems specification language under standardization by IEEE
(IEEE 1694) that allows for the specifier to design separate modules, attribute
various model constraints to them, and reason about the system’s behavior,
specifically focusing on the interaction of elements from different domains. The
Rosetta parser uses the Parsec [12] parser combinator library to target the recur-
sive AST, which can then be converted into the non-recursive AST (the syntactic
functors). Type checking starts with the parser’s output and sequences its alge-
bras to construct the complete typing analysis.

The type checker uses InterpreterLib to break the analysis into a series of
sequenceable, simple algebras. These can be viewed as various passes over the
structure, similar to multiple passes in a compiler. The initial two algebras record
scopable items and build up a symbol table for each node. The third algebra
performs traditional type checks, generating constraints on types. Unification
occurs over the set of constraints, not over the structure of the AST, so the type
checker performs unification prior to sequencing the final algebra, a substitution
of actual types into the type variables and symbol tables at each node.

Sequencing algebras provides the results of previous algebras per-node, and
this allows for a simple structure of the type checker. First, symbol table items
are recorded in-place. A second algebra passes these items up and down the
AST structure to fill out the symbol tables of defined items at each node. At
this point, we have decorated the AST with symbol tables of all legal names that
are in scope. The symbol table entries include type variables to represent each
item as well, so we also have a representation of the type of each node available.
This names analysis can now be composed with other algebras.

The type checker composes the symbol table analysis with a constraints gen-
eration analysis. With type variables available through the symbol table, the
type checker generates constraints on the types of nodes based on their envi-
ronment and subterms’ types. For instance, an if term will require its guard
to be a boolean, and will require the if type to be the least upper bound of
its branches’ types. These constraints are unified by an algorithm based on that



data Operators t = Plus t t | Times t t
$(derive makeAll ’’Operators)

evalOperators :: ( Monad m, SubFunctor VNum v, SubFunctor VBool v
) => Ty -> Algebra Operators (m (Fix v))

evalOperators TInt (Plus x y) = intOp (+) x ¥y

evalOperators TBool (Plus x y) = boolOp (l|) x ¥y

evalOperators TInt (Times x y) = intOp (*¥) x y

evalOperators TBool (Times x y) = boolOp (&&) x y ‘asTypeOf‘ x

type F = Operators :$: Integers :$: Booleans :$: FVoid

evalPhi ::
( MonadError e m, Error e, , MonadError el ml, Error el
, SubFunctor VBool v, SubFunctor VNum v
, MonadSequence F Ty (m1 (Fix v)) m
) => Algebra F (m (Ty, ml (Fix v)))
evalPhi = TypeCheck.phi ‘seqMAlg*
(\t f_t -> evalOperators t Q@+Q@ Interpreters.composite_phi)

eval :: Fix F -> I0 O
eval t = case runSeqT (cata evalPhi t) of
Left e —> putStr "Type error:" >> putStrLn e
Right (ty, m) —>
case m of
Left e -> putStr "Evaluation error:" >> putStrLn e
Right v -> putStr "Value:" >> putStrLn (show v)

Fig. 10. Syntax and semantics for the overloaded operators and an interpreter for the
combined language

found in [16], but modified to address subtyping issues. Unification operates over
the set of constraints, not over the AST itself, and occurs outside of the alge-
bras. Not everything has to be an algebra when using InterpreterLib. Unification
generates a list of appropriate substitutions for type variables, which are then
substituted into the types and symbol tables at each node in another algebra. It
composes the names analysis and constraints analysis, but as the replacement
of type variables with concrete types is very regular, we use a generic traversal,
which InterpreterLib also provides.

The type checker can be improved and used for different purposes with mini-
mal changes. As the type checker must sometimes generate the symbol tables for
imported packages (in other files), a mechanism for storing symbol tables and
re-using the results is employed to avoid duplication of effort. Also, as Rosetta
provides overloading of basic operators, simulation efforts must know when to
cast primitive values. Even if we know that adding an int and a real will be
performed as (+) ::real—real—real, we must still convert each element to a
real value. A coercion algebra sequences the type checker to find types, and



then identifies which elements need casting. There is no need to modify the type
checker, only to sequence its algebras to make type information available.

The type checker composes different algebras to define type correctness in
Rosetta. Not only is it defined via separate semantics for scoping, typing con-
straints, and substitutions, but these algebras can be used without modification
when composing new semantics that rely on type information. InterpreterLib
facilitates straightforward reasoning about types and type checking while pro-
viding modularity.

5.2 Oread

InterpreterLib has been used extensively in the development of Oread [7], a
functional language that can be compiled either as software, to be executed on
a general purpose CPU, or as hardware, to be synthesized to a FPGA netlist. A
wide range of language analyses for Oread have been implemented as semantic
algebras, including a type checker, optimizations, and an evaluator. Moreover,
three compilation target backends have been implemented, one which uses C as
a high-level assembly, one that uses the LLVM intermediate representation, and
finally a hardware backend which generates structural VHDL. Using Interpreter-
Lib to construct the language analyses for Oread demonstrates the usefulness of
using composition to combine individual component analyses.

First, Oread is an experimental language, and during the development of the
toolset language features were often added or removed. The Oread type checking
algebra, for example, is defined as the composition of separate type checking al-
gebras, each independently of the other constructs. Integrating the type checking
logic for a new language construct requires no change to the existing algebras.

Second, the backend compiler algebras, generating C or VHDL, utilize the
results of the type checking algebra. This can be trivially accomplished using
the segMAlg algebra combinator for composing heterogeneous semantics. If the
segMAlg combinator were not used, the compiler algebras would either replicate
the type checking implementation, resulting in a duplication of that logic, or the
implementor would have to manually define the “plumbing” to propogate the
type checking results to the compiler algebra. Rather than define that plumbing
on an ad hoc basis, the seqMAlg algebra implements a re-usable mechanism.

6 Related Work

Liang et al. [13] build upon a line of research into monad transformers [3, 22, 25].
Cartwright and Felleisen [1] achieve a similar result, allowing orthogonal exten-
sion of language semantics, using extended direct semantics rather than monad
transformers to structure the computational effects. The orthogonal contribu-
tions of Gayo et al. [4] are most related to generic programming. See [20] for a
comparison of the most mature techniques.

Reps and Teitelbaum [19] represent languages via attribute grammars and
focus on source transformations. Mosses [14] extends the work on Plotkin’s



structural operational semantics [17, 18], introducing modularity in defining op-
erational semantics of languages. Syntax is modularly defined with SDF [5].
Deursen et al. [2] algebraically specify languages in ASF+SDF, and the Meta-
Environment [23] provides an open-source platform and libraries for language
implementations that follow ASF+SDF and other formalisms. InterpreterLib
provides similar modularity in a denotational semantics.

Strategic programming [9, 24] adopts term rewriting strategies as a program-
ming methodology in order to separate the concerns of traversal and semantics.
Such separation yields re-usable semantics and traversal schemes. Algebra com-
binators are an instantiation of strategy combinators in the domain of modular
denotational semantics. The seqMAlg combinator’s management of monadic en-
capsulation is a synthesizing contribution at the juncture of modular monadic
semantics and strategic programming. In particular, it is strictly more expressive
than the 1etTU strategy combinator from the Strafunski library [10] because it
also provides the results computed at the subterms (and potentially all descen-
dents) to the indexed algebra.

Lammel et al. [11] also use the terminology “algebra combinators,” but apply
it to what we call generic algebras, algebras that exhibit polymorphism over
the functor. Lammel’s paper defines only one syntactic signature, thus functor-
polymorphism is not evident. InterpreterLib implements the “updateable fold
algebras” concept from [11] with the SubFunctor modularity interface.

7 Conclusions / Future Work

InterpreterLib combines the benefits of modular monadic programming with
generic programming techniques to provide a flexible environment for creat-
ing composable data transformations. In this paper we described two forms of
composition implemented in IntepreterLib. The first allows composition of mul-
tiple syntactic elements and their associated processors using modular monadic
techniques. The second allows composition of multiple semantic interpretations
using algebra combinators. The net result is a mechanism for composing seman-
tic interpretations over distinct syntactic elements along with a mechanism for
composing complete interpretations.

The approach has been successfully demonstrated in a variety of settings.
A pedagogical example of a traditional interpreter written using InterpreterLib
is presented in detail to illustrate its use. Additionally, two examples from type
checking and mixed system synthesis are included as anecdotal evidence of Inter-
preterLib’s effectiveness. We continue to use InterpreterLib extensively, applying
it to the synthesis of analysis models from specifications, a prototype comonadic
simulator, and other tools in the Raskell [8] Rosetta analysis suite. Although
difficult to quantify, we believe our suite of representative applications provides
substantial anecdotal evidence of savings in both development and testing time.

Future work related to InterpreterLib application includes more extensive
applications for type checking, analysis model synthesis, and system synthe-
sis from Rosetta specifications. We have also proposed using InterpreterLib’s



compositional techniques for synthesizing secure systems, although this work
is largely speculative at this time. Finally, planned extensions include develop-
ment of similar techniques for graph transformations and exploration of modular
comonadic semantics.
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