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Abstract. Monads provide a greatly useful capability to pure languages
in simulating side-effects, but implementations such as the Monad Trans-
former Library [1] in Haskell prohibit reuse of those side-effects such
as threading through two different states without some explicit work-
around. Monad Factory provides a straightforward solution for opening
the non-proper morphisms by indexing monads at both the type-level
and term-level, allowing ‘copies’ of the monads to be created and simul-
taneously used within even the same monadic transformer stack. This
expands monads’ applicability and mitigates the amount of boilerplate
code we need for monads to work together, and yet we use them nearly
identically to non-indexed monads.
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1 Introduction

Programming with monads in Haskell provides a rich set of tools to the pure
functional programmer, but their homogeneous nature sometimes proves unsat-
isfactory. Due to functional dependencies in the Monad Transformer Library
(mtl), an individual monad can only be used in one way in a fragment of code,
such as using the State monad to store a particular state type. When a program-
mer wants to use a monad in multiple ways at once, some hack or work-around is
necessary, such as using a record structure or carefully lift-ing through a spe-
cific monad transformer stack. While monad transformers allow us to combine
the effects of different monads, we cannot directly use transformers to combine
the effects of a particular monad multiple times. The problem grows as code
from various sources begins to interact–when using existing code, a monad’s us-
age might be “reserved” for some orthogonal use; should you edit that code, even
if you can? Even when we give in and re-implement a common monad to differ-
entiate between the uses, we must provide instances for a host of other common
monads in defining the transformer, including providing an instance relating to
the the copied monad–these details require more knowledge about monads than
simply using them. We seek a more adaptable process for capturing monadic
behavior, and expect some streamlining, re-usability, and a less error-prone pro-
cess than some ad-hoc options that are commonly used. In particular, we expect
to write fewer instances for transformer inter-operability.
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This paper introduces type-indexed monads, which allow for multiple distinct
instances of a monad to coexist, via explicit annotations. A simple type class
links the term-level index and the type-level index together, allowing both type
inference and evaluation to differentiate between instances of monads.

An arbitrary number of these indexed monads can coexist, making monadic
programming more modular and more flexible. This ‘factory’ approach solves
some of the problems associated with non-indexed monads, and avoids the need
for early design decisions on monad usage.

This approach tries to work with the existing implementation and existing
code based on mtl, rather than propose massive re-writing. Perhaps most inter-
estingly, the core technique may prove useful for other cases where a functional
dependency causes instance selection to be problematic.

This work provides the following contributions:

– Particular monadic side-effects (such as state maintenance) may be used
multiple times simultaneously, without affecting each other’s usage.

– Type-indexed monads are compatible with existing monadic code, so we do
not have to prepare our existing code to accomodate type-indexed monads.
They can be stacked together in a monad transformer stack, also with the
monads found in the Monad Transformer Library provided with GHC [2].

– Libraries that use common monadic effects don’t need a local copy of any
monad along with all the requisite instances. We discuss why that libraries
might resort to re-implementing monads, providing a mechanism for remov-
ing the code duplication in favor of a re-usable solution. This saves effort
and mitigates the error-prone process of monad implementation.

– When we combine monad transformers, we need an instance describing how
every pair of transformers can be lifted through each other; this quadratic
number of required instances is mitigated, as we provide instances that
address the entire indexed family of monads. As long as type-indexed monads
can define the needed semantics, there are no more instances to create.

– The State, Reader, Writer, RWS, and Error monads are implemented as
type-indexed monads (available on Hackage [3]).

We identify the concept of a type-indexed monad, then build upon the ini-
tial definitions of monads to guide the type-indexed versions of monads. Type-
indexed monads do not attempt to provide a simplified interface to monads.
Rather, the point is to make heterogeneous monad usage simpler and more con-
venient for a programmer who has already overcome the hurdle of understanding
monads.

2 Problem

Monads are a mechanism often used for simulating effectful computation in
a pure language like Haskell. They are pervasive in Haskell programs, yet the
mechanism used to define them in the Monad Transformer Library—type classes
and the related instances—has drawbacks.
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Type classes indicate that any given instance type has the overloaded func-
tions defined for it. Consider the monad State s, and the associated type class
MonadState s m.

class (Monad m) ⇒ MonadState s m | m → s where

get :: m s

put :: s → m ()

newtype State s a = State {runState :: (s → (a,s))}

instance MonadState s (State s) where

get = State $ λs → (s, s)

put s = State $ λ → ((), s)

MonadState defines a set of ‘non-proper morphisms’, get and put (as op-
posed to ‘proper’ morphisms like return and >>= ). We have an instance of
MonadState defined for the State monad, meaning that we can use get and put
to construct monadic values. The problem arises that s must be determinable
by m. For a given monadic computation for some m, get always gets a value of
a particular type. We can’t use get and put to store multiple s’s, and we can’t
use them to store values of different types. The functional dependency m→s at
once allows us to use State at various types for s in separate places in our code,
and restricts us from using State at various types in the same code.

Example—Design Decisions, Implications Suppose we are writing a li-
brary of monadic code. We want to provide some abstractions of operations that
happen to maintain an environment of name-value pairs and pass around an
integer as state; the actual purpose of the library is irrelevant. If we were free to
be direct, we might actually use the State and Reader monads to manage our
[(String,v)] and Int values for us. As we develop our library, we realize that
we need some extra values to be kept in State; since we’ve already used State,
we end up instead moving to a record as our state–indeed, many programmers
would have started with this approach to avoid the tedious translation through
the code. Now we can add to this record all the state we want, as long as we
are designing the library and not just using it. An issue arises, in that State
computations now have access to all fields of the record. Just as we would like
to have separation in our processes’ memory, we would like a guarantee of the
separation of access to our different pieces of state. Some [4] use separate copies
of the State monad to guarantee that separation. We will see that type-indexed
monads are, at the type level, incapable of accessing or modifying each other’s
contents, and may be ideally suited to such work.

Our library will surely be exciting and popular, and we want to be savvy
to our users’ needs–they might want to use our library in their own monadic
code that already uses State and Reader–so we create our own MyLibM monad
(and transformer version) that provides the exact features of State and Reader,
as well as the many instances needed for it to be a monad and be ‘stackable’
(combined via the monad transformers) with the original State and Reader.
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As our library gains in popularity, some users want to expand on the state
stored in our record–but it is closed–just as we can’t add constructors to a data
definition except at the source, we can’t add fields to a record except in its initial
definition. Another user decides they want to use our library in a way we hadn’t
anticipated–they want to use it for a few different things at once, and they have
to play a rousing game of ‘count the lifts’ in order to use the MyLibM monad
twice or more in the same transformer stack. Another user wants to use their
own hand-written monad with ours, and has to write a few more instances to
make the two interact appropriately, even though they already have instances
for State and Reader.

Through this entire process, we find problems whenever we want to expand a
monad’s usage or re-use it. We have some closed definitions, code copies of some
monads, and some unhappy library users that had to create their own work-
arounds for our code. What if we could use a monad for its effects in multiple
ways without having to resort to records (and other similar approaches, such as
HLists)? What if we didn’t have to create our own State and Reader monads
just to make sure the library users still had free use of it?

Type-indexed monads aleviate these problems by allowing us to use different
type-level indexes to differentiate between intended uses of a monad. In our
library example, this means that we can have several State constraints over our
code to thread different states through our code at once (whether or not the
states’ types happen to match). Instead of using a record type, we could just
use another index of the monad if we chose. Instead of copying the functionality
of monads into our own MyLibM monad, we can create an index to use; whether
we export that index or not also gives us control over how the library may be
used. The indexed versions are distinct from the original definitions, and they
may be used together. The library users can now use State to their own liking
(and multiple times as well) without interfering with library code. They can
even use the library code at different indexes in the same code, and it only
requires different type-indexes, and no tedious lifting, which can easily be
abused. We also gain a guarantee of separation–we don’t worry about one get
affecting the wrong monad, as the types wouldn’t line up–we gain this separation
by the parametricity of the type-indexed monads’ definitions. We can have one
set of instances that work for any number of indexes, meaning if we can define
our monad in terms of those offered in indexed style, we won’t have any new
instances to write, nor will users downstream. The number of instances is usually
quadratic in the number of monads in the transformer stack, so this becomes
more valuable as more monads are stacked.

3 Type-Indexed Monads

In order to provide a mechanism for type-indexed monads, we must account for
differentiation between type-indexed monads at both the term-level for evalua-
tion, and also at the type-level during typing. We consider some possible example
uses to visualize type-indexed monad usage, and then provide details of a realiz-
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able implementation. The concept itself arose as a realization that McBride [5]
uses type-level representations of numbers to create indexes that simulate terms
at the type level; the dependent feel of explicitly indexing monads seems like a
plausible avenue for type-level programming.

We use the State monad as our running example, though of course others
are also implemented. Instead of using a non-proper morphism and expecting
Haskell to infer the index we are using, we explicitly label each usage. If we relied
on an inference mechanism (with no index argument), that would preclude the
opportunity of using multiple copies of a monad that happened to operate on
the same type, e.g. using two different State monads to store different sets of
available registers in a compiler. If we are creating type-indexed monads, they
should closely resemble usage of the original non-indexed version. We add the
explicit indexing parameter as a first parameter to all non-proper morphisms.
By convention, we add an ‘x’ (or ‘X’) to all labels to differentiate them from the
original monad definition rather than rely on name qualifications. This explicit
indexing will allow us to use different type-indexes with StateX to store the
same type of state.

As an introduction to the syntax and feel of type-indexed monads, consider
a basic monadic successor function, and a similar function that increases two
separate states, using StateX monads:

succM :: (MonadState Int m) ⇒ m ()

succM = do n ← get

put $ n+1

succ2M :: (MonadStateX Index1 Int m, MonadStateX Index2 Int m) ⇒ m ()

succ2M = do x ← getx Index1

y ← getx Index2

putx Index1 $ x+1

putx Index2 $ y+1

Instead of providing separate get1 and get2 functions, we parameterize the get
function to operate over the index as well. This feels similar to the record-as-state
approach mentioned in the introduction, except that we can leave previous uses
of State untouched. Also, this approach is open to further indexed uses. If we
were to try to use lifts in order to use State twice, we might specify that
(put 1 >> lift (put 5)) :: StateT Int (State Int) (). To express this via con-
straints, the type may be written as (MonadState Int (t m), MonadState Int m,

MonadTrans t) ⇒ t m (). It’s possible, but this gets messier as we add more con-
straints: we are specifying the transformer stack in our type. We would like to
separate this concern, especially if we want to combine the code with code that
has a more constrained type. We could perhaps use abstractions to hide the lift-
ing, but this is still one more step that we have to do, and that we can get wrong.
Phantom typing [6] won’t help us here: an expression such as (put 5) doesn’t
give enough information to know into which Int-state to put the 5–either one
would be plausible embedded in a do-expression, so there’s no ‘best’ answer for
the phantom to find or check for us.
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Type-indexed monads clearly need to have distinct types. Haskell does not
have dependent types, so our indexing must appear at the type level as well. Seek-
ing openness, we express the type of a monadic computation by constraining it
rather than constructing it. We define what characteristics a monadic compu-
tation must include, rather than directly defining it. The type of succ2M states
that m is a monad exibiting the behavior of the (MonadStateX Index1 Int)
instance, as well as the MonadStateX Index2 Int) instance. It is important to
realize that succ2M can be used in any monadic computation that includes at
least these non-proper morphisms. Other type-indexed uses may be later incor-
porated with use of succ2M.

3.1 Creating Type-Indexes

We want to create an index that exists at both the type and value level uniquely.
The type-level representation is used in differentiating the type of one type-
indexed monad from another, and the value-level representation is used in dif-
ferentiating a value of one type-indexed monad from another. We also need a
link between the two—type inference needs to know that a particular index
value always refers to a particular type-level index, and constructing values of
a particularly-indexed monad requires knowing how to represent the type-level
index in order to generate a value of that type-indexed monad, for instance when
returning a value. The Index type class exactly represents that correspondence
between the term-level and type-level.

class Index ix where

getVal :: ix

Creating a new type index comes in two predictable steps: we generate a simple
atomic datatype, and provide an instance for Index.

data MyIndex = MyIndex deriving (Show, Eq)

instance Index MyIndex where getVal = MyIndex

A singleton datatype and a trivial instance for each index are all we need
for a new index to index into the monads. Template Haskell could be used to
further-simplify the process, but it is already short. This simple addition of an
index at both levels is all we need to completely introduce type-indexed monads.
The idea is simple, direct, and gives us more options in how we use and think of
monads.

We can now proceed to use these values at the type and term level inter-
changeably (via getVal and ::) in order to differentiate between instances of a
monad.

3.2 Implementation

Just as in the implementation of the mtl monads, indexed monads will each re-
quire (i) a data constructor or newtype; (ii) an instance for the Monad type class;
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(iii) a type class for the non-proper morphisms; (iv) an instance for the datatype
at that type class; and (v) a transformer version that satisfies the MonadTrans
type class in order to be combined with other monads in a transformer stack. We
develop the StateX monad, showing how automatic a translation it is from the
original definition of State. We will underline all indexing code—the remaining
code would define the original, non-indexed monad. The type-indexed version
should directly arise from this prescriptive process of adding indexes. The same
process works on other monads such as Reader and Writer, but is not shown
for brevity’s sake.

The StateX Monad We create the necessary data structure to represent a
computation of the StateX monad, as well as a run function. We use newtype
just as mtl does. We additionally define mkStateX to allow tagging the index
type without directly ascribing a type, though this is only needed in the monad’s
definition and not in usage. We split the run function in two for the same reason.

The recurrent theme in indexing a monad is to have a value of the index type
(its index value) be the first parameter to every non-proper morphism, and to
include the index as a type parameter to the data structure and type class. The
index is simply a label at the type level, and we use those labels to help identify
which ‘instance’ of the monad is affected. The run function states that, given an
index ix, a monadic computation of the same index of the monad and a starting
state, we should execute the computation with that starting state. It is precisely
the same as the original definition, except that we now index the monad at each
usage.

newtype StateX ix s a = StateX {runStateX’ :: s -> (a, s)}
mkStateX :: (Index ix) => ix -> (s->(a,s)) -> StateX ix s a

mkStateX v = StateX v

runStateX :: (Index ix) => ix -> StateX ix s a -> (s->(a,s))

runStateX m s = runStateX’ m s

For StateX to be a monad, it must provide definitions for >>= and return.
Again, notice we must always ensure the index matches. We also see the way
in which the only function of the Index type class is used, to generate a value
corresponding to a particular type, effectively converting the type down to the
only value that inhabits the type (ignoring bottom). Otherwise, the code is quite
similar to the State monad’s Monad instance.

instance (Index ix) ⇒ Monad (StateX ix s) where

return a = mkStateX (getVal::ix) $ λ s → (a,s)

((StateX x)::StateX ix s a) >>= f = mkStateX (getVal::ix) $ λ s →
case (x s) of (v,s’) → runStateX’ (f v) s’

We also require a type class for the non-proper morphisms of our type-indexed
monad, and we replicate the MonadState type class to handle our type-indexed
versions.
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class (Monad m, Index ix) => MonadStateX ix s m | ix m → s where

getx :: ix → m s

putx :: ix → s → m ()

The getx and putx functions are identical to those found in MonadState, except
for the extra parameter for the type index. We now provide the implementation
of the special effects of StateX to show how any StateX monad can perform
the special behavior of the MonadStateX class. As before, we repeat the original
definition’s code, with our type-level indexing labels.

instance (Index ix) ⇒ MonadStateX ix s (StateX ix s) where

getx (ixv::ix) = StateX ixv $ λx → (x,x)

putx (ixv::ix) s = StateX ixv $ λ → ((),s)

We now have the basic definition of a monad that we want. However, we have not
yet created a transformer version of the monad, nor have we handled the special
circumstances that arise when we use multiple monads of different indexes. Nor
have we enabled StateX to work alongside the original State monad. We turn
our attention next to handling these concerns.

The StateTX Transformer We now create a transformer version of the
StateX monad, filling the same purpose as the StateT transformer does for
the State monad. We create a new data structure and run function. Again,
we must have the same type index to run the transformer. To complete the
definition of the StateTX monad, we must provide the relevant instances for
Monad, MonadTrans, and MonadStateX. Furthermore, to connect the StateTX
transformer to the StateX monad, we need an instance for the MonadStateX
type class in order to support the non-proper morphisms, and we need a means
of lifting monadic computations of the transformer.

newtype StateTX ix s m a = StateTX runStateTX’ :: s -> m (a,s)

mkStateTX :: (Index ix) => ix -> (s->m(a,s)) -> StateTX ix s m a

mkStateTX v = StateTX v

runStateTX :: (Index ix) => ix -> StateTX ix s m a -> s -> m (a,s)

runStateTX m s = runStateTX’ m s

instance (Index ix, Monad m) ⇒ Monad (StateTX ix s m) where

return a = mkStateTX (getVal::ix) $ λs → return (a,s)

((StateTX x)::StateTX ix s m a) >>= f = mkStateTX (getVal::ix)

$ λs → do (v,s’) ← x s

runStateTX’ (f v) s’

--lifting a state transformer’s operations

instance (Index ix) ⇒ MonadTrans (StateTX ix s) where

lift x = mkStateTX (getVal::ix) $ λs’→x >>= λx’→return(x’,s’)

instance(Index ix,Monad m) ⇒ MonadStateX ix s (StateTX ix s m) where

getx (ixv::ix) = mkStateTX ixv $ λ(s1::s) → return (s1,s1)

putx (ixv::ix) s = mkStateTX ixv $ λ → return ((),s)
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By now this should look familiar. We have a transformer version of the StateX
monad, and this transformer itself can be indexed. Up to this point, we haven’t
dealt with multiple indexes of a single kind of monad. This is the part that makes
all the previous preparation worthwhile.

The following instance provides a way for index ix2 to provide the function-
ality of the index ix1 by explaining what to do when a getx x1 or putx ix1
computation is encountered. Note that the instance manually pipes its own state
through behind the scenes by labeling the ix2 index’s state (s::s2) in an ab-
straction, performing the computation from index ix1, and then returning the
pair that further threads the ix2 index’s state into the next computation. This
is the key to separation of the two indexes’ state.

instance (Monad m, Index ix1, Index ix2, MonadStateX ix1 s1 m )

⇒ MonadStateX ix1 s1 (StateTX ix2 s2 m) where

getx (ixv::ix1) = mkStateTX (getVal::ix2) $ λ(s::s2) → do

v1 ← getx (ixv::ix1)

return (v1,s))

putx (ixv::ix1) v1 = mkStateTX (getVal::ix2) $ λ(s::s2) → do

putx (ixv::ix1) v1

return ((),s)

In short, this defines how two indexes can coexist without affecting each
other. It relies on the type information of the index, and not on the type infor-
mation of what state is held by each monad. Each type-indexed monad could
hold the same type of state and never be confused for another.

This does require GHC’s OverlappingInstances pragma (among others) to
be enabled. However, the overlap should only be required in the above instance
to differentiate between two indexes that are easily tested for equality, and the
pragma is not required at the site of usage.

Interoperability One of our stated goals is to reuse particular monadic features
with existing code that most likely uses the original definitions of monads. We
should therefore be able to mix the indexed versions of a monad with the original.
We show in this section how to mix the State and StateX monads. The indexed
monads provided in the Hackage package all can be used with the mtl monads.

Even in the definitions of Haskell’s library-provided monads, they must pro-
vide instances for each monad to interact with every other. These ‘cooperation’
instances occupy a large part of the mtl’s codebase. We want the StateTX trans-
former monad to be able to provide the MonadState functionality, and we want
the StateT transformer monad to provide the MonadStateX functionality. Each
of these needs results in a new instance, simply defining the state management
and adding the index labeling at the type level.

instance (MonadState s1 m, Index ix) ⇒ MonadState s1 (StateTX ix s2 m)

where

get = mkStateTX (getVal::ix) $ λs → do n ← get

return (n,s)

put v = mkStateTX (getVal::ix) $ λs → put v >>= return ((),s)
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instance (Monad m, MonadStateX ix s1 m, Index ix)

⇒ MonadStateX ix s1 (StateT s2 m) where

getx (ixv::ix) = StateT $ λs → do n ← getx (getVal::ix)

return (n,s)

putx (ixv::ix) (v::s1) = StateT $ λs → do putx (getVal::ix) v

return ((),s)

Although the code is not included in this paper, there is of course a need for
instances often provided by monad definitions: instances for Functor, MonadFix,
and instances that let the transformer version provide the non-proper morphisms
of all the other ‘standard’ monads such as IO, Error, Writer, and Reader. This is
no different than the original definitions of monads in that there is an initial price
to pay for interoperability when defining the stack of monads that combine to
create the monad with the desired capabilities. Similarly, we only have to define
these once in a library and then simply use them. If we only need to interact
with one copy of a monad, we could still just write the instances for mtl; if we
need two copies, we write instances for the indexed monads; if we need any more
copies, there are no more instances to write–and the indexed monad instances
are essentially identical to the mtl instances. This time we gain an unlimited
number of monads from it, not just one. The indexed library could even provide
a set of bindings mimicking the original definitions, but implemented via the
type-indexed definitions — then the library could become a drop-in replacement
for even easier use. By creating another index, we hook into that entire set of
instances, and any type-indexed monad can fully participate with all other type-
indexed monads and the original mtl monads without writing more instances.

This does not entirely mitigate the need for instances. In particular, any
home-grown monad still needs its own set of instances. If it does not interact
with multiple copies of any one monad then we are not required to write those
instances, and so no extra work is required; we simply may write one more set of
instances that corresponds to an unlimited number of monads. This only serves
to highlight the need to support reuse of the monad definitions.

3.3 Separation of Type-Indexed Monads

We should briefly reason about why two type-indexed StateX monads cannot
access each others’ state. We are interested in ensuring that one type-indexed
monad cannot access a differently-indexed monad’s state. We can devise a simple
argument based on the types involved. The only way to access or modify the state
of a StateX monad is to use the non-proper morphisms with the given index,
or to directly create a StateX X1 s1 v1 value. By having a single value in the
index-type, we exclude the possibility of two different indexes existing at the
same type. Therefore, an expression like getx X1 :: StateX X1 s1 v1 has no
means of accessing the state s2, which is tied to values of type StateX X2 s2 v2.
Just as Haskell disallows indexing into a list with a Boolean (xs!!True), at the
type level we are excluding the possibility of using the wrong type of index to
access the state. This guarantee cannot be argued as succinctly when using a
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record that provides unfettered access to all of its fields. By looking at the type
signature of a monadic function, we can tell definitively whether it is capable of
seeing or modifying a particular indexed state.

We have checked a couple of properties over the indexed state monads using
QuickCheck [7]. A problem arises in that the types change when we use different
indexes. This property is great for understanding separation, but horrible for
generating test cases. The approach was to design a small domain-specific lan-
guage (DSL) for representing a computation, create our Arbitrary instances of
that, and then translate it into a computation constrained with all of the indexes
that we allowed in the DSL. This process is complex enough that it starts to
obfuscate the properties being checked. In short, we looked at properties such
as showing that using a StateX monad with the same operations will yield the
same result as using just the State monad; we also tested that a put and get
with a particular state monad (indexed or not), interrupted by any number of
puts and gets from other distinct state monads, will still result in the originally
placed value. We observed that the properties held, assuming we trust the DSL
and its conversions. When a test approaches the complexity of the system on
which we are checking properties, the value is not as clear.

3.4 Usage

Using indexed monads is virtually the same as using the original monads. We
construct our computations using >>= and return (or more familiarly, do-
notation) and the non-proper morphisms, and then run the computation in a
combination of the run functions of the monads involved. Type ascriptions are
similar in necessity as when using the basic monads. We assume that StateX,
StateTX, ReaderX, and ReaderTX, are all defined.

Using a type-indexed monad by itself is only distinguished by the addition of
the index in using the non-proper morphisms and in ascribing the type. In this
example, type ascriptions are voluntary.

comp::(MonadReaderX MyIndex Int m) ⇒ Int → m Int

comp x = do a ← askx MyIndex

return (x+a)

runcomp :: Int → Int

runcomp x = runReaderX MyIndex (comp x) 4

Indexed monads also work with their ancestors (the non-indexed versions),
and do not interfere with each other as they are independently defined. They
can also work with other indexes of themselves, as this example also shows. Note
that we use the original State monad with an integer for its state, and that
two differently-indexed StateX monads also use integers as their state without
disturbing each other. We also see another indexed StateX monad containing
boolean state, showing that it does not prohibit heterogeneous usage between
the type-indexed monads. Also, note that the run function stacks the original
monad between the indexed monads. Type-indexed monads impose no additional



117

restriction on the order in which you run them. The type ascriptions for quad
and runquad are not necessary.

data Ix1 = Ix1 deriving (Show, Eq)

instance Index Ix1 where getVal = Ix1

-- and similarly for Ix2, Ix3.

quad :: (MonadStateX Ix1 Bool m, MonadStateX Ix2 Int m,

MonadStateX Ix3 Int m, MonadState Int m)

⇒ m Int

quad = do a ← getx Ix1

b ← getx Ix2

c ← getx Ix3

d ← get

return (if a then b+c else d)

runquad :: Bool → ((((Int,Int),Int),Int),Bool)

runquad b = flip (runStateX Ix1) b

. flip (runStateTX Ix2) 2

. flip runStateT 10

. flip (runStateTX Ix3) 3

$ quad

%> runquad True

((((5,3),10),2),True)

%> runquad False

((((10,3),10),2),False)

Next, we use two unrelated type-indexed monads to showcase their usage in
conjunction with each other. Note e.g. that ReaderX and StateX can use the
same index safely, as there is no confusion between which monad is referenced.

compM::(MonadReaderX Ix Int m, MonadStateX Ix String m) ⇒ Int → m Int

compM x = do a ← askx MyIndex

putx MyIndex $ "var"++(show a)

return (a + x)

comp::Int → (Int,String)

comp x = flip (runReaderX Ix) 4 . flip (runStateTX Ix) "" $ compM x

%> comp 5

(9,"var4")

We can use the ErrorX monad to throw and catch multiple errors in the same
code. We use the ascribe function to streamline the examples — otherwise it
would be unclear what instance to use to satisfy ErrorX ix e. We also use
runIdentity — Just as there is no runError but only runErrorT, there is no
runErrorX, only runErrorTX.
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data Err = E1 | E2 Int | E3 String deriving (Show, Eq)

instance (Index ix) => ErrorX ix Err where

noMsgx ix = E1; strMsgx ix = E3

ascribe::(MonadErrorX X1 Err m, MonadErrorX X2 String m) => m a->m a

ascribe = id

run = runIdentity . runErrorTX X1 . runErrorTX X2

%> run . ascribe $ return 5

Right (Right 5)

%> run . ascribe $ throwErrorx X1 E1

Left E1

%> run . ascribe $ throwErrorx X2 "no"

Right (Left "no")

We can run our indexed ErrorX monads in whatever order we choose. Throw-
ing the same X2 error but running the monads in different orders naturally affects
the nesting of the resulting Either type.

throw2no = throwErrorx X2 "no"

%> runIdentity . runErrorTX X1 . runErrorTX X2 . ascribe$ throw2no

Right (Left "no")

%> runIdentity . runErrorTX X2 . runErrorTX X1 . ascribe$ throw2no

Left "no"

%> run.ascribe$ catchErrorx X1 (throwErrorx X1 (E3 "err3"))

(λ(E3 s) -> throwErrorx X2 s)

Right (Left "err3")

The original mtl couldn’t handle multiple errors at once — that could only be
simulated with a closed datatype, as we did with Err. Indexed monads allow us
to throw and catch various types of errors within the same monadic code.

We have seen that type-indexed monads are used nearly identically to non-
indexed monads. We have gained the ability to extend our usage of particular
non-proper morphisms without re-defining them; instead, we only must generate
a new type index, a trivial task.

4 Related Work

Monad Transformers. Moggi [8] introduces monads as a model of computa-
tion, and others [9–11] continue this invaluable work to introduce and develop the
idea of monad transformers. GHC [2] distributes with the Monad Transformer Li-
brary [1]. The current work with type-indexed monads and type-indexed monad
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transformers extends this work in a new direction, parameterizing the monads
themselves (as opposed to parameterizing over monads), and allowing for more
versatile use via indexing while leaving intact current patterns of non-indexed
use. The new contribution is to open the monads in order to allow concurrent
distinct instances of the monads to operate separately.

MonadLab. MonadLab [12] creates a domain-specific language utilizing
Template Haskell [13] in order to encapsulate monad construction and abstract
away implementation details. Being both a pedagogical tool for learning mon-
ads and a positive contribution to the expressivity and convenience of monads,
MonadLab uses the meta-programming of Template Haskell to create an en-
tirely new monad with the DSL-specified side-effects, replete with the required
instances and regularly-specified non-proper morphisms. Type-indexed monads
go in a different direction–rather than encapsulate and hide the details of mon-
ads, they expand on possible usage of the existing monads. Type-indexed monads
provide a means to combine monadic code (avoiding index clashes rather than
intersecting usage) and add more side-effects ad-hoc (via another indexed copy).

Parameterized Monads. Atkey [14] takes a categorical approach to mon-
ads that also introduces the notion of type-varying state. Rather than require
that e.g. the State monad always inputs and outputs a particular state s, a
State computation accepts state of type s1 and outputs state of type s2. This
of course requires a multiplicative property that chained State computations’
outputs and inputs align to compatible types. This does not afford the ability to
store multiple pieces of state, but does relax our state requirements by allowing
us to change throughout our computation exactly what type of state is stored.
Similar ideas are spread throughout the Haskell-Cafe mailing list, notably by
David Roundy and Oleg Kiselyov in late 2006.

Monatron. Jaskelioff [15] takes a ground-up approach to monad transform-
ers, approaching the issue of the quadratic lifting instances by standardizing the
lifting procedure between transformers. Monatron accomplishes this by separat-
ing the usage from the implementation of non-proper morphisms, meaning that
we can lift through any transformer, as opposed to defining lifting instances
through particular transformers. However, in order to re-use monadic effects as
we’ve discussed, the user still must define the lifting-depth for each interacting
use of the monadic effects; this does not enable using library definitions (written
in Monatron) in multiple ways once the lifting depths are set.

Type-indexed monads do not solve the issue of quadratic lifting instances
per se, but mitigate the issue by providing the instances as necessary, so long
as the monad with the desired non-proper morphisms can be indexed. Jaskelioff
discuses an example of two Error monads stacked with a State monad and
the confusion between which errors to throw; this is a direct translation into
type-indexed monads that implement Error and State.

HLists. One approach to opening the contents of e.g. State is to use an
HList [16] as the state. HLists provide a way to use type-level programming
to guarantee that an index into the structure will result in a value, and of a
particular type. One could use this to gain some flexibility into the ‘re-use’ of a
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monad by adding constraints on the state or environment to ensure a desired field
is included. This decision still must be made initially, or else downstream uses
cannot take the opportunity. Also, there is no guarantee of separation between
the states, as all are available for modification. Type-indexed monads can still
use a record at the values level instead of at the types level as for HLists, and
yet we can still add more uses as well. By defining abstractions around usage of a
type-indexed monad in a separate module and only exporting those abstractions
and a few type synonyms, we can tell by the type of an expression whether
it can access a particular state. HLists are concerned with heterogeneous lists
themselves, and not in opening up usage of monads.

5 Conclusions and Future Work

We have introduced the notion of type-level indexes into monads to provide
‘copies’ of monads. We’ve shown how such an implementation compares to non-
indexed monads to motivate their usefulness and approachability. We provided
a reference of implementation details, and discussed how type-indexed monads
allow us to reduce the amount of code necessary as well as reduce a source of
possible errors by generalizing the process of duplicating particular side-effects.

Type-indexed monads provide a flexible framework for reusing monadic fea-
tures. They open up the monad definitions with explicit indexing, allowing us
to extend the use of non-proper morphisms without program-wide modification
of existing uses. Indexed usage is added, rather than modifying current usage.
Type-indexed monads solve the issue of using monads in library code by provid-
ing copies of monads, rather than manually generating a copy of needed monads
along with all the instances. This both enhances code re-use while minimizing
the chances for error introduction. Type-indexed monads also mitigate the num-
ber of instances that we need for monad transformers when multiple distinct
monads can be replaced by indexed variants rather than hand-coded semantic
copies of monadic functionality. If a stack of monads can be defined in terms
of type-indexable monads, then all instances are already provided. Even if this
is not so, one set of instances now applies to an unlimited number of monads.
We write interfaces between kinds of monads, instead of between each imple-
mentation of a particular set of side-effects. Type-indexed monads are used in
nearly identical fashion to non-indexed monads, providing a familiar interface
that should aid in adoption. The reference implementation is available from the
Hackage repository [3], an indexed approach to the mtl package. We would like
to see type-indexed monads for even more monadic definitions in the future.
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